66,550 research outputs found

    Optical Resonator Analog of a Two-Dimensional Topological Insulator

    Full text link
    A lattice of optical ring resonators can exhibit a topological insulator phase, with the role of spin played by the direction of propagation of light within each ring. Unlike the system studied by Hafezi et al., topological protection is achieved without fine-tuning the inter-resonator couplings, which are given the same periodicity as the underlying lattice. The topological insulator phase occurs for strong couplings, when the tight-binding method is inapplicable. Using the transfer matrix method, we derive the bandstructure and phase diagram, and demonstrate the existence of robust edge states. When gain and loss are introduced, the system functions as a diode for coupled resonator modes.Comment: 10 pages, 9 figure

    Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles

    Full text link
    A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived with the help of the instanton method. The tunneling between n-th degenerate states of neighboring wells is dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with the LSZ method in field theory in which the tunneling is viewed as the transition of n bosons induced by the usual (vacuum) instanton is recovered. The observation made with our new result is that the tunneling effect increases at excited states. The results should be useful in analyzing results of experimental tests of macroscopic quantum coherence in ferromagnetic particles.Comment: 18 pages, LaTex, 1 figur

    The Inuence of Misspecified Covariance on False Discovery Control when Using Posterior Probabilities

    Full text link
    This paper focuses on the influence of a misspecified covariance structure on false discovery rate for the large scale multiple testing problem. Specifically, we evaluate the influence on the marginal distribution of local fdr statistics, which are used in many multiple testing procedures and related to Bayesian posterior probabilities. Explicit forms of the marginal distributions under both correctly specified and incorrectly specified models are derived. The Kullback-Leibler divergence is used to quantify the influence caused by a misspecification. Several numerical examples are provided to illustrate the influence. A real spatio-temporal data on soil humidity is discussed.Comment: 22 pages, 5 figure

    Natural Inflation with Hidden Scale Invariance

    Get PDF
    We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns10.025(N60)1n_s-1\approx -0.025\left(\frac{N_{\star}}{60}\right)^{-1} and r0.0667(N60)1r\approx 0.0667\left(\frac{N_{\star}}{60}\right)^{-1}, where N3065N_{\star}\approx 30-65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.Comment: 8 pages, minor revision, to be published in PL
    corecore